

Utilizing Near Surface Geophysical Testing for the Purpose of Developing Site Characterization and Preliminary Parameters

Nick Ratcliff, PG, RPG

Explore with us

What are near surface geophysics?

Smarter Exploration

Smarter Exploration

Smarter Exploration

What is a Smart Exploration Plan?

Predict

 Looking from Above – Pivvot, Stage1/VSP, Phase 1, Historical Records...

Screen

 Adding Some Depth – Remote Sensing/LiDAR/InSAR, Geophysical Screening and Profiling...

Target

• **Seeing is Believing** – Borings, CPT, Test Pits, Borehole Geophysics, MWD, In-Situ...

Test

 Getting Close – Lab Testing and Sampling, Solar Pile Load Testing (PLT), Deep Foundation Testing (DFT), Instrumentation...

Smart Exploration Plan

- Predict areas of concern based on historic data
- Screen using a non-destructive tool
- Surgically investigate the site
- Test for soil parameters

How do we apply it?

- Define a parameter to investigate
- Scope the investigation
- Outline the findings and assess the condition being investigated
- Provide recommendations to avoid/mitigate the condition

RED = BAD

YELLOW = MAYBE BAD

GREEN = PROBABLY NOT BAD

PURPLE = PROBABLY VERY BAD

Expecting the Unexpected

Site Restrictions May Prohibit Boring Studies:

- Overhead and underground obstructions
- Low overhead or interior access
- Prohibitive clearing or access tolerances

Case Study

- Area proposed for large scale infrastructure project
- Marginal site class expected (D or potentially E)
- Wanted to evaluate bearing stratum and liquefaction potential

Predict

- Cemeteries
- National Wetlands Inventory
- Historic Places
- Liquefaction Potential

Predict

- Geotechnical borings from 2005 nearby
- Site is clear of known cemeteries
- Some hydric soils are possible
- Liquefaction risk is considered lower based on publicly available maps

Screen

- Review of public lidar data are there large areas of concern?
- Review street view for access, site concerns

Screen

- Pair of MASW lines along proposed bridge alignment
- Borings ultimately planned along alignment

Screen

Preliminary Design

Preliminary Design

- Cross section view of the footings
- Rough estimate of design parameters
- Site class "D" 1,100 fps

Target and Test

- Conduct additional borings to refine parameters
- Suggest additional MASW at other suspect bent locations

Financial Implications

- Next 12 Months Projects for Letting (LADOTD)
 - ~713 miles of pavement and forensic studies
 - ~104 miles of new roadway and bridge construction
- Estimated ~3,500 pavement cores, falling weight deflectometer, and Nuke Gauge Measurements, as well as ~1,000 geotechnical borings

Financial Implications

- Estimated \$4.8mil for exploration fees between methods
 - If 25% of locations are switched out for GPX, 15% reduction in cost
 - If 50% of locations are replaced with GPX, 30% reduction in cost
- Rarely do we fully replace traditional sampling with geophysical testing

QUESTIONS?

Utilizing Near Surface Geophysical Testing for the Purpose of Developing Site Characterization and Preliminary

